

3ª Feira de Projetos ANAIS DO EVENTO

CÁLCULO DE UMA TRELIÇA DE MADEIRA DE EUCALIPTO COM ESTRUTURA EM VIGAS TIPO WARREN

Autor(res)

Elias Ricardo Durango Mirela Maiele Da Silva Nycholas Rommero Machado Teixeira Gabriel Henrique Da Silva Cremonese Carlos Daniel De Oliveira Souza Flavio Goncalves Da Silva

Categoria do Trabalho

1

Instituição

FACULDADE ANHANGUERA DE EDUCAÇÃO, CIÊNCIAS E TECNOLOGIA DE SOROCABA

Resumo

A ponte treliçada de madeira é uma estrutura projetada para distribuir o peso de forma eficiente, utilizando uma rede de elementos triangulares interligados. Inicialmente esse tipo de ponte foi amplamente utilizado ao longo dos séculos, especialmente em áreas rurais, devido à abundância de madeira e a simplicidade na construção. Neste contexto, o presente estudo tem como objetivo dimensionar uma ponte de madeira com estrutura em vigas treliçadas do tipo Warren, seguindo passos que incluem a definição dos parâmetros e do escopo do projeto, além da elaboração do trabalho e execução da modelagem 2D e 3D da ponte, o qual explora a viabilidade do uso da madeira de eucalipto como material estrutural, considerando que o layout estrutural apresenta excelente resistência e estabilidade, permitindo que suportem cargas consideráveis mesmo com o uso materiais relativamente leves. Para alcançar esses objetivos, a metodologia adotada incluiu a aplicação dos princípios da estática e a revisão da literatura sobre o desempenho de pontes treliçadas e as propriedades mecânicas da madeira de Eucalipto. Por meio do ensaio de flexão que foi conduzido no laboratório com cinco peças de madeira de eucalipto, medindo 20x20x300 mm, avaliou-se o comportamento do material sob carga, o qual os resultados obtidos forneceram dados sobre a resistência à flexão e a deformação das amostras, permitindo uma análise detalhada do desempenho da madeira. Adicionalmente, foi realizado cálculo da tensão admissível, aplicando um fator de segurança para garantir que a estrutura possa resistir a cargas adicionais e imprevistas durante sua vida útil, que através deste possibilitou o dimensionamento adequado das vigas da treliça. Por meio dos softwares MDSolids, que calcula a distribuição de forças nas barras e Inventor que possibilita a realização do projeto em 2D, 3D e a simulação numérica, foi possível prever o comportamento da ponte sob diferentes condições de carga, onde essas simulações foram fundamentais para identificar pontos críticos de tensão e deformação nas vigas, fornecendo dados importantes para a otimização do projeto. Os resultados obtidos nos ensaios de flexão, em conformidade com as dimensões estabelecidas, indicam que a madeira de Eucalipto possui resistência adequada para a construção da ponte, e com base nos cálculos e simulações, estima-se que a ponte treliçada projetada suporte uma carga de 1000 N.