

12 a 16 de AGOSTO de 2024

Efeito dos sistemas de produção agropecuários do Cerado sobre populações de bactérias do gênero Rhizobium.

Autor(res)

Bianca Obes Correa
Joao Pedro Batista Da Silva
José Antonio Maior Bono
Layza Santos Da Silva
Gleicy Karoline Alves De Souza
Patricia Oliveira Chaves
Eduardo Barreto Aguiar

Categoria do Trabalho

Iniciação Científica

Instituição

CENTRO UNIVERSITÁRIO ANHANGUERA DE CAMPO GRANDE

Introdução

O uso de fontes de nitrogênio (N) sintéticas resulta em perdas de N na forma de gás de efeito estufa. O favorecimento de práticas que contribuam para a fixação biológica de nitrogênio (FBN) corrobora na redução da necessidade do nitrogênio sintético, assegurando a produtividade das culturas (CARVALHO et al., 2017). Dentre os sistemas de destaque podemos citar a Integração Lavoura-Pecuária (ILP) que utiliza o Sistema de Plantio Direto (SPD), contribui com aumento do teor de matéria orgânica, redução da temperatura, manutenção da umidade, preservação da diversidade e estimulação da atividade biológica, ciclagem de nutrientes, resultando no crescimento da capacidade produtiva do solo (SIMAO et al., 2012). A crescente exigência por sustentabilidade direcionada aos sistemas de produção do Cerrado, possibilita o desenvolvimento de métodos que correlacionem tanto a interpretação de bioindicadores de qualidade do solo quanto a produtividade agrícola.

Objetivo

Avaliar a densidade populacional de bactérias do gênero Rhizobium em solos coletados de diferentes sistemas de produção agropecuários no Cerrado.

Material e Métodos

A amostragem do solo foi realizada em experimento implantado em parceria entre Uniderp e EMBRAPA Gado de Corte, Campo Grande – MS. O experimento contou com 10 tratamentos e uma testemunha. A classificação dos sistemas: três sistemas de pastagem em modo contínuo solteiro, nas modalidades com adubação, sem adubação e com adubação e leguminosas; dois sistemas de lavoura contínua de cultivo solteiro modo convencional e conservacionista; cinco sistemas intermitentes de cultivo solteiro e consorciado com eucalipto representados pela ILP e ILPF, intervalados a cada três e quatro anos. Para a determinação populacional de Rhizobium, usou-se diluição seriada de 10g de solo em 90 ml de solução salina (0,85%), o isolamento, partiu da diluição na 10-4

12 a 16 de AGOSTO de 2024

segundo Romeiro (2007), seguindo de semeadura de 120 µL em placa de Petri contendo meio YMA adicionada de corante vermelho congo, em triplicata e incubação por 48 h a 28° C.

Resultados e Discussão

Os resultados indicaram variações no crescimento de Rhizobium entre os diferentes tratamentos. O T2 (pastagem contínua com adubação) apresentou o maior crescimento bacteriano, sugerindo uma possível adaptação das bactérias a adequada fertilidade e condições de umidade estável derivada da cobertura vegetal. Em contraste, T1 (pastagem contínua sem adubação) mostrou crescimento inferior ao T11 (testemunha), a conversão do Cerrado para o agrossistema pode reduzir a atividade microbiológica do solo, conforme SIMAO et al. (2012). O T5 (lavoura com cultivo conservacionista) e T4 (lavoura com cultivo convencional), mostraram crescimento relativamente elevado de Rhizobium, indicando que práticas de manejo que favorecem a fertilidade do solo resultam vantagem.

Conclusão

A escolha do manejo agrícola influencia na população de microrganismos, neste caso bactérias do gênero Rhizobium. Práticas que melhoram a qualidade do solo, como adubação e rotação de culturas, favorecem a população bacteriana. Em contraste, solos sob manejo contínuo sem adubação mostraram menor densidade populacional de Rhizobium. Esses resultados destacam a importância de estratégias de manejo sustentáveis para otimizar a fixação biológica de nitrogênio e a produtividade agrícola.

Agência de Fomento

FUNDECT-Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul

Referências

CARVALHO, M. T. de M.; MADARI, B. E.; CARVALHO, M. da C. S.;; TEODORO, I. F. Potencial mitigador da fixação biológica de N sobre emissão de N2O em latossolo de cerrado. Em: Resumo em Anais de Congresso, 2017, [...]. 2017.

ROMEIRO, R. da S. Controle Biológico de Doenças de Plantas – Procedimentos. [s.l.] UFV, 2007. 1–269 p. SIMAO, E. de P.; GONTIJO NETO, M. M.; QUEIROZ, L. R.; SILVA, I. H. S. da; OLIVEIRA, S. A. de; COUDERC, V. S. J. A.; MARRIEL, I. E. Qualidade biológica de solo sob sistema de Integração Lavoura-Pecuária no cerrado. Em: Embrapa Milho e Sorgo, 2012, [...]. 2012. p. 1764–1769.